Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
Mais filtros








Intervalo de ano de publicação
1.
Biochim Biophys Acta Mol Cell Res ; 1871(5): 119721, 2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38580088

RESUMO

Metabolic reprogramming is considered as a hallmark of cancer and is clinically exploited as a novel target for therapy. The E2F transcription factor-1 (E2F1) regulates various cellular processes, including proliferative and metabolic pathways, and acts, depending on the cellular and molecular context, as an oncogene or tumor suppressor. The latter is evident by the observation that E2f1-knockout mice develop spontaneous tumors, including uterine sarcomas. This dual role warrants a detailed investigation of how E2F1 loss impacts metabolic pathways related to cancer progression. Our data indicate that E2F1 binds to the promoter of several glutamine metabolism-related genes. Interestingly, the expression of genes in the glutamine metabolic pathway were increased in mouse embryonic fibroblasts (MEFs) lacking E2F1. In addition, we confirm that E2f1-/- MEFs are more efficient in metabolizing glutamine and producing glutamine-derived precursors for proliferation. Mechanistically, we observe a co-occupancy of E2F1 and MYC on glutamine metabolic promoters, increased MYC binding after E2F1 depletion and that silencing of MYC decreased the expression of glutamine-related genes in E2f1-/- MEFs. Analyses of transcriptomic profiles in 29 different human cancers identified uterine sarcoma that showed a negative correlation between E2F1 and glutamine metabolic genes. CRISPR/Cas9 knockout of E2F1 in the uterine sarcoma cell line SK-UT-1 confirmed elevated glutamine metabolic gene expression, increased proliferation and increased MYC binding to glutamine-related promoters upon E2F1 loss. Together, our data suggest a crucial role of E2F1 in energy metabolism and metabolic adaptation in uterine sarcoma cells.

3.
J Inherit Metab Dis ; 46(1): 55-65, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36220785

RESUMO

Protein catabolism ultimately yields toxic ammonia, which must be converted to urea by the liver for renal excretion. In extrahepatic tissues, ammonia is temporarily converted primarily to glutamine for subsequent hepatic extraction. Urea cycle disorders (UCDs) are inborn errors of metabolism causing impaired ureagenesis, leading to neurotoxic accumulation of ammonia and brain glutamine. Treatment includes dietary protein restriction and oral "ammonia scavengers." These scavengers chemically combine with glutamine and glycine to yield excretable products, creating an alternate pathway of waste nitrogen disposal. The amino acid transporter SLC6A19 is responsible for >95% of absorption and reabsorption of free neutral amino acids in the small intestine and kidney, respectively. Genetic SLC6A19 deficiency causes massive neutral aminoaciduria but is typically benign. We hypothesized that inhibiting SLC6A19 would open a novel and effective alternate pathway of waste nitrogen disposal. To test this, we crossed SLC6A19 knockout (KO) mice with spfash mice, a model of ornithine transcarbamylase (OTC) deficiency. Loss of SLC6A19 in spfash mice normalized plasma ammonia and brain glutamine and increased median survival in response to a high protein diet from 7 to 97 days. While induced excretion of amino acid nitrogen is likely the primary therapeutic mechanism, reduced intestinal absorption of dietary free amino acids, and decreased muscle protein turnover due to loss of SLC6A19 may also play a role. In summary, the results suggest that SLC6A19 inhibition represents a promising approach to treating UCDs and related aminoacidopathies.


Assuntos
Erros Inatos do Metabolismo dos Aminoácidos , Sistemas de Transporte de Aminoácidos Neutros , Doença da Deficiência de Ornitina Carbomoiltransferase , Camundongos , Animais , Doença da Deficiência de Ornitina Carbomoiltransferase/genética , Doença da Deficiência de Ornitina Carbomoiltransferase/metabolismo , Glutamina , Nitrogênio/metabolismo , Amônia , Modelos Animais de Doenças , Camundongos Knockout , Ureia/metabolismo , Ornitina Carbamoiltransferase/genética , Sistemas de Transporte de Aminoácidos Neutros/genética
4.
J Chem Neuroanat ; 125: 102149, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36058434

RESUMO

In mammals, reproductive function is under the control of hypothalamic neurons named Gonadotropin-Releasing Hormone (GnRH) neurons. These neurons migrate from the olfactory placode to the brain, during embryonic development. For the past 40 years, these neurons have been considered an example of tangential migration, i.e., dependent on the olfactory/vomeronasal/terminal nerves. Numerous studies have highlighted the factors involved in the migration of these neurons but thus far overlooked the cellular microenvironment that produces them. Many of these factors are dysregulated in hypogonadotropic hypogonadism, resulting in subfertility/infertility. Nevertheless, over the past ten years, several papers have reported the influence of glial cells (named olfactory ensheathing cells [OECs]) in the migration and differentiation of GnRH neurons. This review will describe the atypical origins, migration, and differentiation of these neurons, focusing on the latest discoveries. There will be a more specific discussion on the involvement of OECs in the development of GnRH neurons, during embryonic and perinatal life; as well as on their potential implication in the development of congenital or idiopathic hypogonadotropic hypogonadism (such as Kallmann syndrome).


Assuntos
Hormônio Liberador de Gonadotropina , Síndrome de Kallmann , Animais , Adulto , Humanos , Movimento Celular/fisiologia , Neuroglia , Neurônios/fisiologia , Mamíferos
5.
J Healthy Eat Act Living ; 2(2): 60-72, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-37772073

RESUMO

Calcium is a nutrient of public health concern and commonly associated with dairy foods. In recent years, plant-based alternatives to dairy products have grown in popularity. This study examines public understanding of dietary calcium in dairy products and plant-based alternatives and explores whether knowledge is associated with product preference. In 2018, the U.S. Food and Drug Administration (FDA) solicited comments on the labeling of plant-based dairy alternatives (FDA-2018-N-3522), including input on consumer understanding of the nutritional content of dairy foods and plant-based products. All 11,906 submissions were obtained and 8,052 were retained after duplicate and near-duplicate comments were removed. Comments were coded for major nutrition themes and those that mentioned calcium and were analyzed for three calcium-specific themes: knowledge and beliefs about calcium content, calcium bioavailability, and health outcomes associated with intake. Submissions were examined in relation to each commenter's preference for dairy products or plant-based alternatives. 244 unique submissions (3.0%) mentioned calcium. Over half (51.2%) of commenters who mentioned calcium preferred plant-based alternatives. Comments mentioning calcium often reflected preference. Most commenters had an accurate understanding of calcium content in dairy and plant-based products. However, several commenters-especially those who preferred plant-based alternatives-misunderstood calcium metabolism and health outcomes related to calcium. Given declining consumption of fluid dairy milk-a key source of dietary calcium-and increasing consumption of plant-based alternatives, addressing gaps in nutrition knowledge and misunderstanding related to dairy and calcium intake is critical and has implications for nutrition education and policy.

6.
J Proteome Res ; 21(1): 151-163, 2022 01 07.
Artigo em Inglês | MEDLINE | ID: mdl-34843255

RESUMO

Microscale-based separations are increasingly being applied in the field of metabolomics for the analysis of small-molecule metabolites. These methods have the potential to provide improved sensitivity, less solvent waste, and reduced sample-size requirements. Ion-pair free microflow-based global metabolomics methods, which we recently reported, were further compared to analytical flow ion-pairing reagent containing methods using a sample set from a urea cycle disorder (UCD) mouse model. Mouse urine and brain homogenate samples representing healthy, diseased, and disease-treated animals were analyzed by both methods. Data processing was performed using univariate and multivariate techniques followed by analyte trend analysis. The microflow methods performed comparably to the analytical flow ion-pairing methods with the ability to separate the three sample groups when analyzed by partial least-squares analysis. The number of detected metabolic features present after each data processing step was similar between the microflow-based methods and the ion-pairing methods in the negative ionization mode. The observed analyte trend and coverage of known UCD biomarkers were the same for both evaluated approaches. The 12.5-fold reduction in sample injection volume required for the microflow-based separations highlights the potential of this method to support studies with sample-size limitations.


Assuntos
Metabolômica , Distúrbios Congênitos do Ciclo da Ureia , Animais , Cromatografia Líquida/métodos , Espectrometria de Massas/métodos , Metabolômica/métodos , Camundongos , Solventes/química , Distúrbios Congênitos do Ciclo da Ureia/diagnóstico
7.
Sci Rep ; 11(1): 22886, 2021 11 24.
Artigo em Inglês | MEDLINE | ID: mdl-34819582

RESUMO

Phenylketonuria (PKU) is a genetic deficiency of phenylalanine hydroxylase (PAH) in liver resulting in blood phenylalanine (Phe) elevation and neurotoxicity. A pegylated phenylalanine ammonia lyase (PEG-PAL) metabolizing Phe into cinnamic acid was recently approved as treatment for PKU patients. A potentially one-time rAAV-based delivery of PAH gene into liver to convert Phe into tyrosine (Tyr), a normal way of Phe metabolism, has now also entered the clinic. To understand differences between these two Phe lowering strategies, we evaluated PAH and PAL expression in livers of PAHenu2 mice on brain and liver functions. Both lowered brain Phe and increased neurotransmitter levels and corrected animal behavior. However, PAL delivery required dose optimization, did not elevate brain Tyr levels and resulted in an immune response. The effect of hyperphenylalanemia on liver functions in PKU mice was assessed by transcriptome and proteomic analyses. We observed an elevation in Cyp4a10/14 proteins involved in lipid metabolism and upregulation of genes involved in cholesterol biosynthesis. Majority of the gene expression changes were corrected by PAH and PAL delivery though the role of these changes in PKU pathology is currently unclear. Taken together, here we show that blood Phe lowering strategy using PAH or PAL corrects both brain pathology as well as previously unknown lipid metabolism associated pathway changes in liver.


Assuntos
Terapia Genética , Fígado/enzimologia , Fenilalanina Amônia-Liase/metabolismo , Fenilalanina Hidroxilase/metabolismo , Fenilalanina/sangue , Fenilcetonúrias/terapia , Transcriptoma , Animais , Biomarcadores/sangue , Encéfalo/metabolismo , Encéfalo/patologia , Modelos Animais de Doenças , Regulação para Baixo , Perfilação da Expressão Gênica , Masculino , Camundongos Knockout , Fenilalanina Amônia-Liase/genética , Fenilalanina Hidroxilase/genética , Fenilcetonúrias/sangue , Fenilcetonúrias/genética , Fenilcetonúrias/patologia , Proteoma , Proteômica
8.
Nat Neurosci ; 24(12): 1660-1672, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34795451

RESUMO

Neurons that produce gonadotropin-releasing hormone (GnRH), which control fertility, complete their nose-to-brain migration by birth. However, their function depends on integration within a complex neuroglial network during postnatal development. Here, we show that rodent GnRH neurons use a prostaglandin D2 receptor DP1 signaling mechanism during infancy to recruit newborn astrocytes that 'escort' them into adulthood, and that the impairment of postnatal hypothalamic gliogenesis markedly alters sexual maturation by preventing this recruitment, a process mimicked by the endocrine disruptor bisphenol A. Inhibition of DP1 signaling in the infantile preoptic region, where GnRH cell bodies reside, disrupts the correct wiring and firing of GnRH neurons, alters minipuberty or the first activation of the hypothalamic-pituitary-gonadal axis during infancy, and delays the timely acquisition of reproductive capacity. These findings uncover a previously unknown neuron-to-neural-progenitor communication pathway and demonstrate that postnatal astrogenesis is a basic component of a complex set of mechanisms used by the neuroendocrine brain to control sexual maturation.


Assuntos
Hormônio Liberador de Gonadotropina , Maturidade Sexual , Astrócitos/metabolismo , Hormônio Liberador de Gonadotropina/metabolismo , Hipotálamo/fisiologia , Neurônios/fisiologia , Maturidade Sexual/fisiologia
9.
Sci Rep ; 11(1): 7254, 2021 03 31.
Artigo em Inglês | MEDLINE | ID: mdl-33790381

RESUMO

Phenylketonuria (PKU) is an autosomal recessive inborn error of L-phenylalanine (Phe) metabolism. It is caused by a partial or complete deficiency of the enzyme phenylalanine hydroxylase (PAH), which is necessary for conversion of Phe to tyrosine (Tyr). This metabolic error results in buildup of Phe and reduction of Tyr concentration in blood and in the brain, leading to neurological disease and intellectual deficits. Patients exhibit retarded body growth, hypopigmentation, hypocholesterolemia and low levels of neurotransmitters. Here we report first attempt at creating a homozygous Pah knock-out (KO) (Hom) mouse model, which was developed in the C57BL/6 J strain using CRISPR/Cas9 where codon 7 (GAG) in Pah gene was changed to a stop codon TAG. We investigated 2 to 6-month-old, male, Hom mice using comprehensive behavioral and biochemical assays, MRI and histopathology. Age and sex-matched heterozygous Pah-KO (Het) mice were used as control mice, as they exhibit enough PAH enzyme activity to provide Phe and Tyr levels comparable to the wild-type mice. Overall, our findings demonstrate that 6-month-old, male Hom mice completely lack PAH enzyme, exhibit significantly higher blood and brain Phe levels, lower levels of brain Tyr and neurotransmitters along with lower myelin content and have significant behavioral deficit. These mice exhibit phenotypes that closely resemble PKU patients such as retarded body growth, cutaneous hypopigmentation, and hypocholesterolemia when compared to the age- and sex-matched Het mice. Altogether, biochemical, behavioral, and pathologic features of this novel mouse model suggest that it can be used as a reliable translational tool for PKU preclinical research and drug development.


Assuntos
Sistemas CRISPR-Cas , Modelos Animais de Doenças , Técnicas de Inativação de Genes , Fenilalanina Hidroxilase/genética , Fenilcetonúrias/genética , Animais , Masculino , Camundongos , Camundongos Knockout
10.
J Chromatogr A ; 1642: 462047, 2021 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-33744605

RESUMO

As the reliance on metabolic biomarkers within drug discovery and development increases, there is also an increased demand for global metabolomics methods to provide broad metabolome coverage and sensitivity towards differences in metabolite expression and reproducibility. A systematic approach is necessary for the development, and evaluation, of metabolomics methods using either conventional techniques or when establishing new methods that allow for additional gains in sensitivity and a reduction in requirements for amounts of a biological sample, such as those seen with methods based on microseparations. We developed a novel standard mixture and used a systematic approach for the development and optimization of optimal, ion-pair free, liquid chromatography-mass spectrometry (LC-MS) global profiling methods. These methods were scaled-down to microflow-based LC separations and compared with analytical flow ion-pairing reagent containing methods. Average peak volume improvements of 7- and 22-fold were observed in the positive and negative ionization mode microflow methods as compared to the ion-pairing reagent analytical flow methods, respectively. The linear range of the newly developed microflow methods showed up to a 10-fold increase in the lower limit of detection in the negative ionization mode. The developed microflow LC-MS methods were further evaluated using wild-type mouse plasma where up to a 9-fold increase in peak volume was observed.


Assuntos
Cromatografia Líquida/métodos , Desenvolvimento de Medicamentos , Descoberta de Drogas , Espectrometria de Massas/métodos , Metabolômica , Reologia , Animais , Humanos , Metaboloma , Camundongos , Padrões de Referência , Reprodutibilidade dos Testes
11.
EMBO Rep ; 21(9): e49807, 2020 09 03.
Artigo em Inglês | MEDLINE | ID: mdl-32657019

RESUMO

This study investigated the role of CDK4 in the oxidative metabolism of brown adipose tissue (BAT). BAT from Cdk4-/- mice exhibited fewer lipids and increased mitochondrial volume and expression of canonical thermogenic genes, rendering these mice more resistant to cold exposure. Interestingly, these effects were not BAT cell-autonomous but rather driven by increased sympathetic innervation. In particular, the ventromedial hypothalamus (VMH) is known to modulate BAT activation via the sympathetic nervous system. We thus examined the effects of VMH neuron-specific Cdk4 deletion. These mice display increased sympathetic innervation and enhanced cold tolerance, similar to Cdk4-/- mice, in addition to browning of scWAT. Overall, we provide evidence showing that CDK4 modulates thermogenesis by regulating sympathetic innervation of adipose tissue depots through hypothalamic nuclei, including the VMH. This demonstrates that CDK4 not only negatively regulates oxidative pathways, but also modulates the central regulation of metabolism through its action in the brain.


Assuntos
Tecido Adiposo Branco , Termogênese , Adipócitos Marrons , Tecido Adiposo Marrom , Animais , Hipotálamo , Camundongos , Termogênese/genética
12.
Cell Metab ; 30(4): 833-844.e7, 2019 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-31474567

RESUMO

The hypothalamus plays a key role in the detection of energy substrates to regulate energy homeostasis. Tanycytes, the hypothalamic ependymo-glia, are located at a privileged position to integrate multiple peripheral inputs. We observed that tanycytes produce and secrete Fgf21 and are located close to Fgf21-sensitive neurons. Fasting, likely via the increase in circulating fatty acids, regulates this central Fgf21 production. Tanycytes store palmitate in lipid droplets and oxidize it, leading to the activation of a reactive oxygen species (ROS)/p38-MAPK signaling pathway, which is essential for tanycytic Fgf21 expression upon palmitate exposure. Tanycytic Fgf21 deletion triggers an increase in lipolysis, likely due to impaired inhibition of key neurons during fasting. Mice deleted for tanycytic Fgf21 exhibit increased energy expenditure and a reduction in fat mass gain, reminiscent of a browning phenotype. Our results suggest that tanycytes sense free fatty acids to maintain body lipid homeostasis through Fgf21 signaling within the hypothalamus.


Assuntos
Células Ependimogliais/metabolismo , Jejum/metabolismo , Fatores de Crescimento de Fibroblastos/metabolismo , Hipotálamo/metabolismo , Palmitatos/metabolismo , Células 3T3-L1 , Animais , Células Ependimogliais/citologia , Hipotálamo/citologia , Gotículas Lipídicas/metabolismo , Lipólise , Camundongos , Camundongos Endogâmicos C57BL , Oxirredução , Espécies Reativas de Oxigênio/metabolismo
13.
J Neurochem ; 148(1): 80-96, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30347438

RESUMO

The recombinant Lonomia obliqua Stuart-factor activator (rLosac) is a recombinant hemolin which belongs to the immunoglobulin superfamily of cell adhesion molecules. It is capable of inducing pro-survival activity in serum-deprived human umbilical vein endothelial cells (HUVECs) and fibroblasts by increasing mitochondrial metabolism. We hypothesize that it could promote neuronal survival by acting on neuroenergetics. Our study reveals that treatment of primary mouse cortical neurons cultured in neurobasal medium lacking B27 supplement with rLosac led to an enhancement of cell viability in a time- and concentration-dependent manner. In parallel, preserved or enhanced phosphorylation of Akt, p44, and p42 MAPK, as well as mTOR was observed following treatment with rLosac. During deprivation, as assessed by western blot and qRT-PCR, protein and mRNA expression of MCT2 (the predominant neuronal monocarboxylate transporter allowing lactate use as an alternative energy substrate) decreased significantly in B27 supplement-deprived cortical neurons and was hardly detected after 24 h of deprivation. Interestingly, rLosac maintained MCT2 protein expression after 24 h of deprivation including at the cell surface without preventing mRNA loss. MCT2 knockdown reduced rLosac-enhanced cell viability, confirming its involvement in rLosac effect. Enhanced uptake of lactate was detected following rLosac treatment and might contribute to rLosac-enhanced viability during deprivation. In the presence of both lactate and rLosac, cell viability was higher than in the presence of lactate alone. Our observations suggest that rLosac promotes cell viability in stressed (B27 supplement-deprived) neurons by facilitating the use of lactate as energy substrate via the preservation of MCT2 protein expression. OPEN SCIENCE BADGES: This article has received a badge for *Open Materials* because it provided all relevant information to reproduce the study in the manuscript. The complete Open Science Disclosure form for this article can be found at the end of the article. More information about the Open Practices badges can be found at https://cos.io/our-services/open-science-badges/.


Assuntos
Proteínas de Insetos/farmacologia , Transportadores de Ácidos Monocarboxílicos/metabolismo , Neurônios/efeitos dos fármacos , Fármacos Neuroprotetores/farmacologia , Peptídeo Hidrolases/farmacologia , Animais , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Córtex Cerebral/efeitos dos fármacos , Córtex Cerebral/metabolismo , Camundongos , Neurônios/metabolismo , Proteínas Recombinantes/farmacologia , Estresse Fisiológico
14.
J Neurochem, v. 148, n. 1, p. 80-96, 2019
Artigo em Inglês | Sec. Est. Saúde SP, SESSP-IBPROD, Sec. Est. Saúde SP | ID: bud-2662

RESUMO

The recombinant Lonomia obliqua Stuart-factor activator (rLosac) is a recombinant hemolin which belongs to the immunoglobulin superfamily of cell adhesion molecules. It is capable of inducing pro-survival activity in serum-deprived human umbilical vein endothelial cells (HUVECs) and fibroblasts by increasing mitochondrial metabolism. We hypothesize that it could promote neuronal survival by acting on neuroenergetics. Our study reveals that treatment of primary mouse cortical neurons cultured in neurobasal medium lacking B27 supplement with rLosac led to an enhancement of cell viability in a time- and concentration-dependent manner. In parallel, preserved or enhanced phosphorylation of Akt, p44, and p42 MAPK, as well as mTOR was observed following treatment with rLosac. During deprivation, as assessed by western blot and qRT-PCR, protein and mRNA expression of MCT2 (the predominant neuronal monocarboxylate transporter allowing lactate use as an alternative energy substrate) decreased significantly in B27 supplement-deprived cortical neurons and was hardly detected after 24h of deprivation. Interestingly, rLosac maintained MCT2 protein expression after 24h of deprivation including at the cell surface without preventing mRNA loss. MCT2 knockdown reduced rLosac-enhanced cell viability, confirming its involvement in rLosac effect. Enhanced uptake of lactate was detected following rLosac treatment and might contribute to rLosac-enhanced viability during deprivation. In the presence of both lactate and rLosac, cell viability was higher than in the presence of lactate alone. Our observations suggest that rLosac promotes cell viability in stressed (B27 supplement-deprived) neurons by facilitating the use of lactate as energy substrate via the preservation of MCT2 protein expression.

15.
J Neurochem ; 148(1): p. 80-96, 2019.
Artigo em Inglês | Sec. Est. Saúde SP, SESSP-IBPROD, Sec. Est. Saúde SP | ID: but-ib15809

RESUMO

The recombinant Lonomia obliqua Stuart-factor activator (rLosac) is a recombinant hemolin which belongs to the immunoglobulin superfamily of cell adhesion molecules. It is capable of inducing pro-survival activity in serum-deprived human umbilical vein endothelial cells (HUVECs) and fibroblasts by increasing mitochondrial metabolism. We hypothesize that it could promote neuronal survival by acting on neuroenergetics. Our study reveals that treatment of primary mouse cortical neurons cultured in neurobasal medium lacking B27 supplement with rLosac led to an enhancement of cell viability in a time- and concentration-dependent manner. In parallel, preserved or enhanced phosphorylation of Akt, p44, and p42 MAPK, as well as mTOR was observed following treatment with rLosac. During deprivation, as assessed by western blot and qRT-PCR, protein and mRNA expression of MCT2 (the predominant neuronal monocarboxylate transporter allowing lactate use as an alternative energy substrate) decreased significantly in B27 supplement-deprived cortical neurons and was hardly detected after 24h of deprivation. Interestingly, rLosac maintained MCT2 protein expression after 24h of deprivation including at the cell surface without preventing mRNA loss. MCT2 knockdown reduced rLosac-enhanced cell viability, confirming its involvement in rLosac effect. Enhanced uptake of lactate was detected following rLosac treatment and might contribute to rLosac-enhanced viability during deprivation. In the presence of both lactate and rLosac, cell viability was higher than in the presence of lactate alone. Our observations suggest that rLosac promotes cell viability in stressed (B27 supplement-deprived) neurons by facilitating the use of lactate as energy substrate via the preservation of MCT2 protein expression.

16.
JCI Insight ; 3(14)2018 07 26.
Artigo em Inglês | MEDLINE | ID: mdl-30046012

RESUMO

The neuropathological effects of phenylketonuria (PKU) stem from the inability of the body to metabolize excess phenylalanine (Phe), resulting in accumulation of Phe in the blood and brain. Since the kidney normally reabsorbs circulating amino acids with high efficiency, we hypothesized that preventing the renal uptake of Phe might provide a disposal pathway that could lower systemic Phe levels. SLC6A19 is a neutral amino acid transporter responsible for absorption of the majority of free Phe in the small intestine and reuptake of Phe by renal proximal tubule cells. Transgenic KO mice lacking SLC6A19 have elevated levels of Phe and other amino acids in their urine but are otherwise healthy. Here, we crossed the Pahenu2 mouse model of PKU with the Slc6a19-KO mouse. These mutant/KO mice exhibited abundant excretion of Phe in the urine and an approximately 70% decrease in plasma Phe levels. Importantly, brain Phe levels were decreased by 50%, and the levels of key neurotransmitters were increased in the mutant/KO mice. In addition, a deficit in spatial working memory and markers of neuropathology were corrected. Finally, treatment of Pahenu2 mice with Slc6a19 antisense oligonucleotides lowered Phe levels. The results suggest that inhibition of SLC6A19 may represent a novel approach for the treatment of PKU and related aminoacidopathies.


Assuntos
Sistemas de Transporte de Aminoácidos Neutros/análise , Sistemas de Transporte de Aminoácidos Neutros/metabolismo , Aminoácidos Neutros/metabolismo , Transporte Biológico/efeitos dos fármacos , Fenilcetonúrias/terapia , Aminas , Sistemas de Transporte de Aminoácidos Neutros/genética , Aminoácidos Neutros/sangue , Animais , Astrócitos/metabolismo , Astrócitos/patologia , Encéfalo/metabolismo , Modelos Animais de Doenças , Feminino , Regulação da Expressão Gênica , Doenças Genéticas Inatas/terapia , Túbulos Renais Proximais/efeitos dos fármacos , Túbulos Renais Proximais/metabolismo , Masculino , Memória de Curto Prazo , Camundongos , Camundongos Knockout , Morfolinos/farmacologia , Oligonucleotídeos/farmacologia , Fenilalanina/sangue , Fenilalanina/metabolismo , Fenilcetonúrias/patologia , Reabsorção Renal/efeitos dos fármacos
17.
Eur J Neurosci ; 46(10): 2596-2607, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-28973792

RESUMO

During mammalian embryonic development, GnRH neurones differentiate from the nasal placode and migrate through the nasal septum towards the forebrain. We previously showed that a category of glial cells, the olfactory ensheathing cells (OEC), forms the microenvironment of migrating GnRH neurones. Here, to characterize the quantitative and qualitative importance of this glial, we investigated the spatiotemporal maturation of glial cells in situ and the role of maturing glia in GnRH neurones development ex vivo. More than 90% of migrating GnRH neurones were found to be associated with glial cells. There was no change in the cellular microenvironment of GnRH neurones in the regions crossed during embryonic development as glial cells formed the main microenvironment of these neurones (53.4%). However, the phenotype of OEC associated with GnRH neurones changed across regions. The OEC progenitors immunoreactive to brain lipid binding protein formed the microenvironment of migrating GnRH neurones from the vomeronasal organ to the telencephalon and were also present in the diencephalon. However, during GnRH neurone migration, maturation of OEC to [GFAP+] state (glial fibrillary acid protein) was only observed in the nasal septum. Inducing depletion of OEC in maturation, using transgenic mice expressing herpes simplex virus thymidine kinase driven by the GFAP promoter, had no impact on neurogenesis or on triggering GnRH neurones migration in nasal explant culture. Nevertheless, depletion of [GFAP+] cells decreased GnRH neurites outgrowth by 57.4%. This study suggests that specific maturation of OEC in the nasal septum plays a role in morphological differentiation of GnRH neurones.


Assuntos
Hormônio Liberador de Gonadotropina/metabolismo , Neuritos/fisiologia , Neuroglia/fisiologia , Crescimento Neuronal , Neurônios/fisiologia , Bulbo Olfatório/crescimento & desenvolvimento , Animais , Movimento Celular , Camundongos , Camundongos Transgênicos , Septo Nasal/crescimento & desenvolvimento , Células-Tronco Neurais/fisiologia , Neuroglia/metabolismo , Neurônios/metabolismo , Bulbo Olfatório/metabolismo , Técnicas de Cultura de Órgãos , Células-Tronco , Órgão Vomeronasal/crescimento & desenvolvimento
18.
Sci Rep ; 6: 34909, 2016 10 06.
Artigo em Inglês | MEDLINE | ID: mdl-27708432

RESUMO

Ketone bodies have been shown to transiently stimulate food intake and modify energy homeostasis regulatory systems following cerebral infusion for a moderate period of time (<6 hours). As ketone bodies are usually enhanced during episodes of fasting, this effect might correspond to a physiological regulation. In contrast, ketone bodies levels remain elevated for prolonged periods during obesity, and thus could play an important role in the development of this pathology. In order to understand this transition, ketone bodies were infused through a catheter inserted in the carotid to directly stimulate the brain for a period of 24 hours. Food ingested and blood circulating parameters involved in metabolic control as well as glucose homeostasis were determined. Results show that ketone bodies infusion for 24 hours increased food intake associated with a stimulation of hypothalamic orexigenic neuropeptides. Moreover, insulinemia was increased and caused a decrease in glucose production despite an increased resistance to insulin. The present study confirms that ketone bodies reaching the brain stimulates food intake. Moreover, we provide evidence that a prolonged hyperketonemia leads to a dysregulation of energy homeostasis control mechanisms. Finally, this study shows that brain exposure to ketone bodies alters insulin signaling and consequently glucose homeostasis.


Assuntos
Ingestão de Alimentos/fisiologia , Hipotálamo/metabolismo , Corpos Cetônicos/metabolismo , Ácido 3-Hidroxibutírico/farmacologia , Proteínas Quinases Ativadas por AMP/metabolismo , Animais , Artérias Carótidas , Ingestão de Alimentos/efeitos dos fármacos , Ingestão de Alimentos/genética , Regulação da Expressão Gênica , Homeostase , Hipotálamo/efeitos dos fármacos , Hipotálamo/fisiopatologia , Infusões Intra-Arteriais , Resistência à Insulina , Corpos Cetônicos/genética , Corpos Cetônicos/farmacologia , Fígado/efeitos dos fármacos , Fígado/enzimologia , Camundongos Endogâmicos C57BL , Transportadores de Ácidos Monocarboxílicos/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Fosfoenolpiruvato Carboxiquinase (ATP)/metabolismo , Pró-Opiomelanocortina/metabolismo , Simportadores/metabolismo
19.
Endocrinology ; 157(1): 304-22, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26562259

RESUMO

Episodic release of GnRH is essential for reproductive function. In vitro studies have established that this episodic release is an endogenous property of GnRH neurons and that GnRH secretory pulses are associated with synchronization of GnRH neuron activity. The cellular mechanisms by which GnRH neurons synchronize remain largely unknown. There is no clear evidence of physical coupling of GnRH neurons through gap junctions to explain episodic synchronization. However, coupling of glial cells through gap junctions has been shown to regulate neuron activity in their microenvironment. The present study investigated whether glial cell communication through gap junctions plays a role in GnRH neuron activity and secretion in the mouse. Our findings show that Glial Fibrillary Acidic Protein-expressing glial cells located in the median eminence in close vicinity to GnRH fibers expressed Gja1 encoding connexin-43. To study the impact of glial-gap junction coupling on GnRH neuron activity, an in vitro model of primary cultures from mouse embryo nasal placodes was used. In this model, GnRH neurons possess a glial microenvironment and were able to release GnRH in an episodic manner. Our findings show that in vitro glial cells forming the microenvironment of GnRH neurons expressed connexin-43 and displayed functional gap junctions. Pharmacological blockade of the gap junctions with 50 µM 18-α-glycyrrhetinic acid decreased GnRH secretion by reducing pulse frequency and amplitude, suppressed neuronal synchronization and drastically reduced spontaneous electrical activity, all these effects were reversed upon 18-α-glycyrrhetinic acid washout.


Assuntos
Junções Comunicantes/metabolismo , Hormônio Liberador de Gonadotropina/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Neuroglia/metabolismo , Mucosa Olfatória/metabolismo , Células Receptoras Sensoriais/metabolismo , Animais , Biomarcadores/metabolismo , Células Cultivadas , Conexina 43/genética , Conexina 43/metabolismo , Embrião de Mamíferos/citologia , Inibidores Enzimáticos/farmacologia , Junções Comunicantes/efeitos dos fármacos , Junções Comunicantes/ultraestrutura , Regulação da Expressão Gênica no Desenvolvimento/efeitos dos fármacos , Proteína Glial Fibrilar Ácida/genética , Proteína Glial Fibrilar Ácida/metabolismo , Hormônio Liberador de Gonadotropina/genética , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Humanos , Cinética , Eminência Mediana/citologia , Eminência Mediana/efeitos dos fármacos , Eminência Mediana/metabolismo , Camundongos Transgênicos , Proteínas do Tecido Nervoso/antagonistas & inibidores , Proteínas do Tecido Nervoso/genética , Neuroglia/efeitos dos fármacos , Neuroglia/ultraestrutura , Neurotoxinas/farmacologia , Mucosa Olfatória/efeitos dos fármacos , Mucosa Olfatória/ultraestrutura , Proteínas Recombinantes de Fusão/metabolismo , Células Receptoras Sensoriais/efeitos dos fármacos , Células Receptoras Sensoriais/ultraestrutura , Técnicas de Cultura de Tecidos
20.
Am J Physiol Endocrinol Metab ; 310(2): E103-15, 2016 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-26530151

RESUMO

Monocarboxylates have been implicated in the control of energy homeostasis. Among them, the putative role of ketone bodies produced notably during high-fat diet (HFD) has not been thoroughly explored. In this study, we aimed to determine the impact of a specific rise in cerebral ketone bodies on food intake and energy homeostasis regulation. A carotid infusion of ketone bodies was performed on mice to stimulate sensitive brain areas for 6 or 12 h. At each time point, food intake and different markers of energy homeostasis were analyzed to reveal the consequences of cerebral increase in ketone body level detection. First, an increase in food intake appeared over a 12-h period of brain ketone body perfusion. This stimulated food intake was associated with an increased expression of the hypothalamic neuropeptides NPY and AgRP as well as phosphorylated AMPK and is due to ketone bodies sensed by the brain, as blood ketone body levels did not change at that time. In parallel, gluconeogenesis and insulin sensitivity were transiently altered. Indeed, a dysregulation of glucose production and insulin secretion was observed after 6 h of ketone body perfusion, which reversed to normal at 12 h of perfusion. Altogether, these results suggest that an increase in brain ketone body concentration leads to hyperphagia and a transient perturbation of peripheral metabolic homeostasis.


Assuntos
Ingestão de Alimentos/efeitos dos fármacos , Metabolismo Energético/efeitos dos fármacos , Hipotálamo/efeitos dos fármacos , Corpos Cetônicos/farmacologia , Adenilato Quinase/metabolismo , Proteína Relacionada com Agouti/metabolismo , Animais , Glicemia , Dieta Hiperlipídica , Ingestão de Alimentos/fisiologia , Metabolismo Energético/fisiologia , Gluconeogênese/efeitos dos fármacos , Gluconeogênese/fisiologia , Homeostase , Hipotálamo/metabolismo , Resistência à Insulina/fisiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Neuropeptídeo Y/metabolismo , Fosforilação/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA